منابع مشابه
Semismooth Matrix-Valued Functions
Matrix-valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, -derivative, directional derivative, and sem...
متن کاملOperator-valued extensions of matrix-norm inequalities
The bilinear inequality is derived from the linear one with the help of an operatorvalued version of the Cauchy-Schwarz inequality. All these results, at least in their finite form, are obtained by simple and elegant methods well within the scope of a basic course on Hilbert spaces. (They can alternatively be obtained by tensor product techniques, but in the author’s view, these methods are les...
متن کاملR-boundedness of Smooth Operator-valued Functions
In this paper we study R-boundedness of operator families T ⊂ B(X, Y ), where X and Y are Banach spaces. Under cotype and type assumptions on X and Y we give sufficient conditions for R-boundedness. In the first part we show that certain integral operator are R-bounded. This will be used to obtain R-boundedness in the case that T is the range of an operator-valued function T : Rd → B(X, Y ) whi...
متن کاملFinite rank harmonic operator-valued functions
The purpose of this paper is to characterize when a harmonic function with values in the finite rank operators on a Hilbert space is expressible as a harmonic matrix-valued function. We show that harmonic function with values in the rank 1 normal operators is expressible as a harmonic matrix-valued function. We also prove that for any natural number, n, a harmonic function with values in the ra...
متن کاملDenseness for norm attaining operator-valued functions
In this note we offer a short, constructive proof for Hilbert spaces of Lindenstrauss’ famous result on the denseness of norm attaining operators. Specifically, we show given any A ∈ L(H) there is a sequence of rank-1 operators Kn such that A+Kn is norm attaining for each n and Kn converges in norm to zero. We then apply our construction to establish denseness results for norm attaining operato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1996
ISSN: 0377-0427
DOI: 10.1016/0377-0427(96)80469-9